

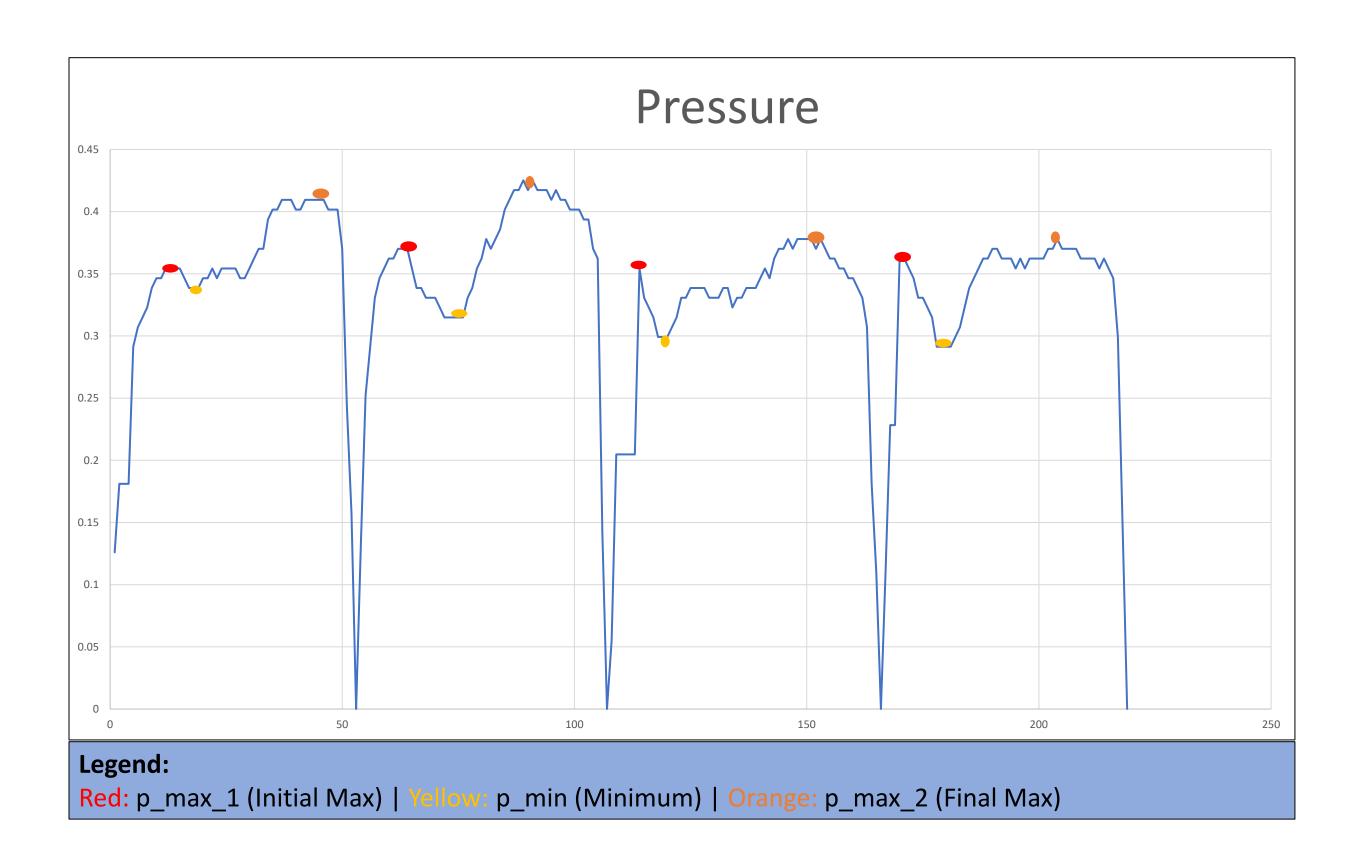
Authorization of Cross-Device Integration

Introduction

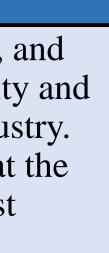
Cyber security is a vastly growing concern in our digital modernizing world, and everyday results in more data breaches. The need for increased digital security and various methods of doing so is a highly needed research and developing industry. An article written by John Zorabedian of <u>Security Intelligence</u>, estimated that the average cost of a security breach resulted in a loss of \$4.24 million. Even just recently during the Tokyo Olympics that was a breach of ticket holder's information according to an article on <u>ComputerWeekly.com</u> by Aaron Tan. Our research will show of the effectiveness of using user interaction for verifying individual users for future security implications.

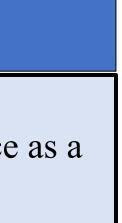
Objective

The objective of our research is to identify the capabilities and possible applications of using user's gestures and interactions with their mobile device as a viable security measure.


Materials/Methods

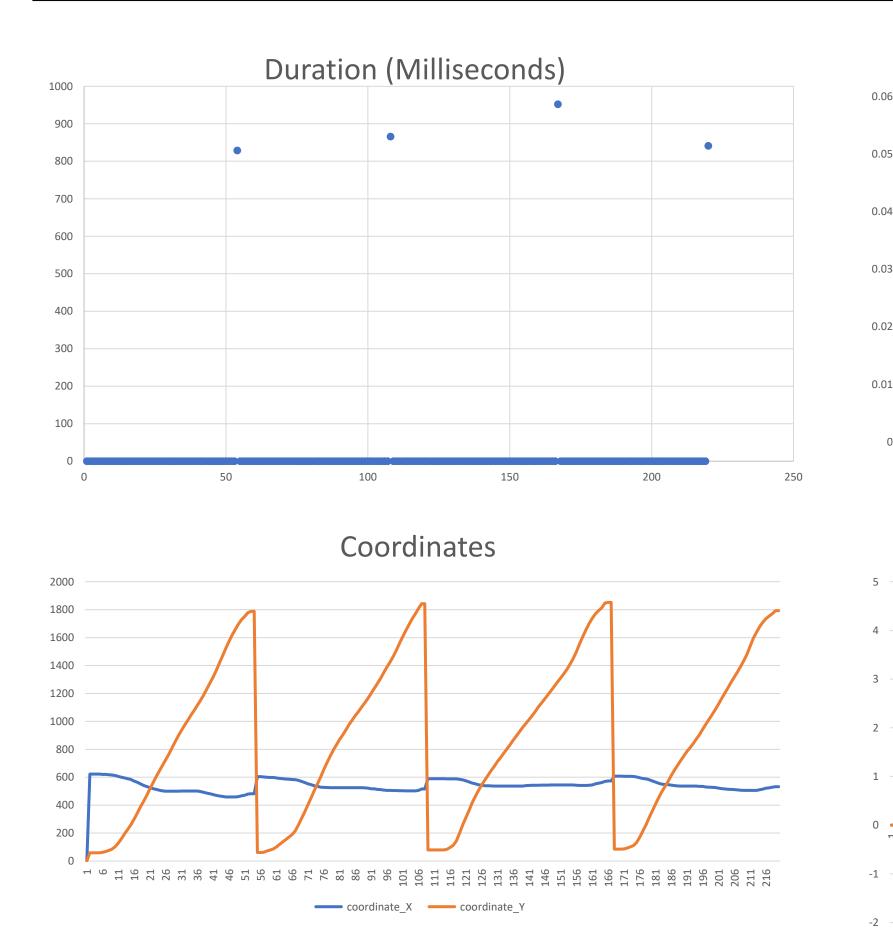
For the development of this application, our primary work was completed using Android Studios for our Integrated Development Environment (IDE), Java as our programming language, Weka (Machine Learning Software), and our Google Pixel phone.


Our process was broken down into developing the code to collect, organize, and export the users' gestures using the Android Studio, and Google Pixel phone to run the program on for testing.


From there we began breaking down the data to find patterns among its sets, these became known as p_max_1, p_min, p_max_2, and std_dev. These data points looked to find the initial max, minimum, ending max, and finding the standard deviation of the entire gesture. These points then became what we use In our testing sets and how we identify users.

Finally, was gathering and storing this data and using Weka to verify success rates for comparisons of the data at identifying their users. This is done all through the software to save as time for trial-and-error testing, by doing thousands of comparisons and locating patterns between them.

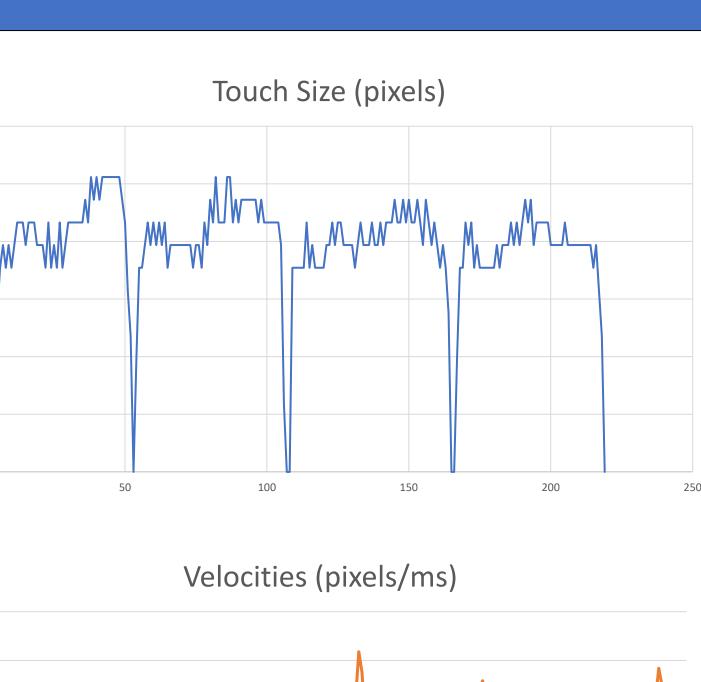
By: Dr. Jun Kong, Aaron Yang, and Jake Leicht

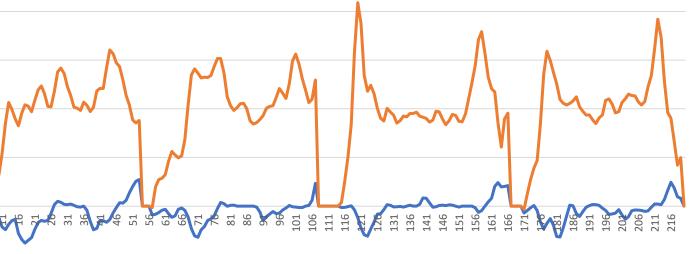

Data Collection



Data Organization

Data	a Samp	oles									
			startTime	endTime	durationTime				touchSize		
TouchID	TouchIndex	Action	(Milliseconds)	(Milliseconds)	(Milliseconds)	pressure	coordinate_X	coordinate_Y	(pixels)	Velocity(X)	Velocity(Y)
	0 (Dnull	0	C	C	C	0	0	0	0	0
	1 1	1 Down	19621673	C	C	0.125984	622	58	0.019685	0	0
	2 2	2 Move	19621673	C	C	0.181102	622	58	0.027559	1.76E-04	-2.01E-05
	3 3	3 Move	19621673	C	C	0.181102	622	58	0.027559	-6.01E-05	-3.71E-06
	4 4	4 Move	19621673	C	C	0.181102	622	58	0.027559	-8.12E-05	-1.02E-05
	5 5	5 Move	19621673	C	C	0.291339	620	62	0.027559	-0.11008	0.175721
	6 6	6 Move	19621673	C	C	0.307087	620	68	0.035433	-0.06442	0.384046
	7 7	7 Move	19621673	C	C	0.314961	. 618	76	0.03937	-0.05201	0.593317
	8 8	8 Move	19621673	C	C	0.322835	616	85	0.035433	-0.08185	0.676305
	9 9	Move	19621673	C	C	0.338583	612	102	0.03937	-0.24338	0.888533
1	0 10	OMove	19621673	C	C	0.346457	605	128	0.035433	-0.42949	1.514158
1	1 11	1 Move	19621673	C	C	0.346457	600	161	0.03937	-0.48108	2.194427
1	2 12	2 Move	19621673	C	C	0.354331	. 595	195	0.043307	-0.37442	2.504712
1	3 13	3 Move	19621673	C	C	0.354331	. 589	227	0.043307	-0.29515	2.275851
1	4 14	4Move	19621673	C	C	0.354331	. 584	260	0.043307	-0.27318	2.064762
1	5 15	5 Move	19621673	C	C	0.354331	. 572	301	0.03937	-0.56081	2.210998
1	6 16	5 Move	19621673	C	C	0.346457	564	342	0.043307	-0.68521	2.59726
1	7 17	7 Move	19621673	C	C	0.338583	552	387	0.043307	-0.75994	2.841776
1	8 18	8 Move	19621673	C	C	0.338583	541	428	0.043307	-0.70374	2.757547
1	9 19	Move	19621673	C	C	0.338583	533	471	0.03937	-0.64662	2.5864
2	0 20	OMove	19621673	C	C	0.346457	525	516	0.03937	-0.47881	2.649902
2	1 21	1 Move	19621673	C	C	0.346457	518	561	0.03937	-0.33762	2.72525
2	2 22	2 Move	19621673	C	C	0.354331	. 512	605	0.035433	-0.29288	2.763328
2	3 23	3 Move	19621673	C	C	0.346457	507	647	0.043307	-0.31168	2.618675
2	4 24	4Move	19621673	C	C	0.354331	. 502	685	0.035433	-0.29125	2.339549
2	5 25	5 Move	19621673	C	C	0.354331	. 500	725	0.03937	-0.14775	2.190864
2	6 26	6 Move	19621673	C	C	0.354331	. 500	766	0.035433	0.034564	2.329279
2	7 27	7 Move	19621673	C	C	0.354331	. 500	811	0.043307	0.099429	2.659268
2	8 28	8 Move	19621673	C	C	0.346457	500	854	0.035433	0.078444	2.758475
2	9 29	Move	19621673	C	C	0.346457	500	897	0.03937	0.035842	2.687622


Data Visualization



Data Training and Testing

Data Export

Currently we have accumulated 10 different data sets from 9 users to test and verify the accuracy of our program.

- our cross-validation sets.
- identifying users in our program.

ime taken to									
	bulla model	l: 0.13 se	conds						
== Stratified	cross-vali	idation ==	:=						
== Summary ==	=								
orrectly Clas	sified Inst	tances	93		96.875	010			
ncorrectly Cl		nstances	3		3.125	010			
appa statisti			0.96						
ean absolute			0.00						
oot mean squa elative absol			0.07 3.93						
oot relative		ror	26.36						
otal Number o	bquarea eri								
. O CULT MUMBEL O	f Instances		20.30	000 5					
96	f Instances		20.30						
96		5		000 5					
		5		005					
96		5		Recall	F-Measure	MCC	ROC Area	PRC Area	Class
96	ccuracy By	S Class ===			F-Measure 1.000	MCC 1.000	ROC Area 1.000	PRC Area 1.000	Class IsJake
96	ccuracy By TP Rate	S Class === FP Rate	Precision	Recall					
96	CCUTACY By TP Rate 1.000 1.000 1.000	FP Rate 0.000 0.024	Precision 1.000 1.000 0.846	Recall 1.000 1.000 1.000	1.000 1.000 0.917	1.000 1.000 0.909	1.000 1.000 0.998	1.000 1.000 0.986	IsJake isNathan isLeftThumb
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800	FP Rate 0.000 0.024 0.000	Precision 1.000 1.000 0.846 1.000	Recall 1.000 1.000 1.000 0.800	1.000 1.000 0.917 0.889	1.000 1.000 0.909 0.884	1.000 1.000 0.998 0.997	1.000 1.000 0.986 0.973	IsJake isNathan isLeftThumb isAiden
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800 1.000	FP Rate 0.000 0.000 0.024 0.000 0.012	Precision 1.000 1.000 0.846 1.000 0.909	Recall 1.000 1.000 1.000 0.800 1.000	1.000 1.000 0.917 0.889 0.952	1.000 1.000 0.909 0.884 0.948	1.000 1.000 0.998 0.997 1.000	1.000 1.000 0.986 0.973 1.000	IsJake isNathan isLeftThumb isAiden isLuis
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800 1.000 0.889	FP Rate 0.000 0.000 0.024 0.000 0.012 0.000	Precision 1.000 1.000 0.846 1.000 0.909 1.000	Recall 1.000 1.000 1.000 0.800 1.000 0.889	1.000 1.000 0.917 0.889 0.952 0.941	1.000 1.000 0.909 0.884 0.948 0.937	1.000 1.000 0.998 0.997 1.000 0.999	1.000 1.000 0.986 0.973 1.000 0.989	IsJake isNathan isLeftThumb isAiden isLuis isMarisa
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800 1.000 0.889 1.000	FP Rate 0.000 0.000 0.024 0.000 0.012 0.000 0.000	Precision 1.000 1.000 0.846 1.000 0.909 1.000 1.000	Recall 1.000 1.000 1.000 0.800 1.000 0.889 1.000	1.000 1.000 0.917 0.889 0.952 0.941 1.000	1.000 1.000 0.909 0.884 0.948 0.937 1.000	1.000 1.000 0.998 0.997 1.000 0.999 1.000	1.000 1.000 0.986 0.973 1.000 0.989 1.000	IsJake isNathan isLeftThumb isAiden isLuis isMarisa isMaryam
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800 1.000 0.889 1.000 1.000	FP Rate 0.000 0.000 0.024 0.000 0.012 0.000 0.000 0.000 0.000	Precision 1.000 1.000 0.846 1.000 0.909 1.000 1.000 1.000	Recall 1.000 1.000 0.800 1.000 0.889 1.000 1.000	1.000 1.000 0.917 0.889 0.952 0.941 1.000 1.000	1.000 1.000 0.909 0.884 0.948 0.937 1.000 1.000	1.000 1.000 0.998 0.997 1.000 0.999 1.000 1.000	1.000 1.000 0.986 0.973 1.000 0.989 1.000 1.000	IsJake isNathan isLeftThumb isAiden isLuis isMarisa isMaryam isMiliann
96	CCUTACY By TP Rate 1.000 1.000 1.000 0.800 1.000 0.889 1.000	FP Rate 0.000 0.000 0.024 0.000 0.012 0.000 0.000	Precision 1.000 1.000 0.846 1.000 0.909 1.000 1.000	Recall 1.000 1.000 1.000 0.800 1.000 0.889 1.000	1.000 1.000 0.917 0.889 0.952 0.941 1.000	1.000 1.000 0.909 0.884 0.948 0.937 1.000	1.000 1.000 0.998 0.997 1.000 0.999 1.000	1.000 1.000 0.986 0.973 1.000 0.989 1.000	IsJake isNathan isLeftThumb isAiden isLuis isMarisa isMaryam

Conclusion

The ability to use user gesture interaction has great potential for future implications of security measures. Including since our research didn't further into varying the coordinates of such user gestures. Working with the user not only just swiping the phone, but also with drawing other shapes on the screen will only increase the level of variations that can occur. More possibilities will lead to greater security of the user's data, which is the ultimate goal in this project's potential.

- Initial tests were to verify the effectiveness of using a user's *pressure*, touch size, and duration time of their gestures. These features proved to be very effective resulting in our training and testing sets being 100% accurate in depicting the correct users. However, we saw that in our cross-validation results only being 75% effectively; predicted 3 out of 4 users correctly.

- Next, we analyzed the usefulness of the coordinates and velocities collected for location and speed at which the users swiped their phones (initial hypothesis proved these features alone would prove not as effective giving users told to swipe in same location and only vertically). This data, surprisingly, found to be 100% accurate in training and testing data sets. Leading to be 94.7% accurate in

- Lastly, we come to see how all 5 features, broken into a total of 25 categories, are at verifying individuals. *Training, testing, and percentage split (80/20) tests* showed to be 100% accurate, and cross-validation came to 96.875% after 95 *folds of the program.* This without a doubt showed to be the best way at